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Positivity and the energy quantization of physical systems: 
the C-shift moment method 

Carlos R Handy and Patricia Lee 
Physics Department, Clark Atlanta University, Atlanta, GA 30314, USA 

Received 17 July 1990 

Abstract. The eigenvalue moment method ( E M M )  of Handy and hessis i s  reformulated 
with special emphasis an the importance of positivity as a general quantization criterion; 
thereby making EMM theory relevant in the analysis of manifestly non-positive systems 
such as those corresponding to multi-dimensional excited bosonic states. 

1. Introduction 

The eigenvalue moment method (EMM) (Handy and Bessis 1985, Handy er nl1988a, b) 
has been shown to be an effective theory for generating converging bounds to the 
eigenenergies of bosonic quantum states, provided the associated wavefunctions can 
be ‘uniquely’ represented in terms of bounded non-negative configurations. These 
restrictions have, for the most part, limited the applicability of the E M M  theory to 
multi-dimensional bosonic ground states (inlcuding the lowest energy states within 
each symmetry class). An important exception is the case of the one-dimensional 
Schrodinger operator. In this case, the E M M  formalism can be directly applied to the 
modulus-squared of the wavefunction, 191’; thereby permitting the quantization of all 
states (Handy 1987a, b). 

Despite these apparent limitations, a careful examination of the underlying prin- 
ciples inherent to E M M  theory leads to an alternate formulation capable of addressing 
multi-dimensional excited bosonic states. In this work we present the essential tbeoreti- 
cal structure of the ‘C-shift’ reformulation and apply it to various one- and two- 
dimensional systems. In particular, besides the pedagogic consideration ofthe harmonic 
oscillator problem, we also apply the C-shift formalism to the quartic potential problem, 
V ( x )  = x4, and to the important two-dimensional system defined by the potential 
function V ( x ,  y)  = ~ ~ + y ~ + A ( x y ) ~ .  The latter problem has received much attention in 
the recent literature because of the non-separability of the associated Hamiltonian and 
its consequences with respect to chaotic behaviour in quantum systems (Killingbeck 
and Jones 1986, Vrscay and Handy 1989). 

The C-shift formalism to be presented effectively allows us to use positivity (or 
more precisely, non-negativity) as a general quantization condition. To this extent it 
is in keeping with the general philosopy underlying ‘density functional theory methods’ 
(Parr and Yang 1989). 

In order to make this work as complete as possible we give an overview of the 
essentials of the EMM theory. This will also facilitate the subsequent discussion on the 
‘C-shift’ formalism. 

0305-4470/91/071565+14$03.50 @ 1991 IOP Publishing Ltd 1565 
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Consider the sextic anharmonic oscillator problem 

- Y ( x ) +  mx2’Y(x)+gx6Y(x) = EY(X). 

The ground state configuration is symmetric and non-negative: 

Y(-x) = Y(x) (1.2) 

Y(X)ZO. (1.3) 

The physical solutions to (1.1) correspond to bounded configurations with finite 
Hamburger moments p ( q )  defined by 

m 

d q )  = I-m dxx4Wx)  ( 1.4) 

and satisfying 

Lc(q)<m. (1.5) 

Integrating (1 .1)  on both sides with respects to I dxxq one obtains the Hamburger 
moment equation 

(1.6) 

Because of the inherent symmetry of the desired solution, the odd-order Hamburger 
moments are zero. Through a simple change of variables, x = 6, the even-order 
Hamburger moments can be shown to be equivalent to the Stieltjes moments, u ( p ) ,  
of the non-negative configuration Y ( G ) / G ,  defined over the non-negative half-real 

gl*(q+6) = - m d q + 2 ) +  EAq)+q(q  - 1 ) d q  -2). 

axis: 

U(P) =lom d y y P W G ) / f i .  (1.7) 

The corresponding Stieltjes moment equation is ( p ( 2 p )  = u ( p ) )  

gu( + 3 j = -mu ( p + i ) + Eu( p j  + Z P ( 2 P  - i )  U( p - i j (i .8) 

for p 3 0. 
The Stieltjes moment equation, (1.8), corresponds to a homogeneous linear finite 

difference equation of order three. As such, the ‘missing moments’ u(O), u ( l ) ,  and 
4 2 )  must be specified, in addition to the energy E (which appears as a parameter), 
before all the other moments can be generated. We may represent this succinctly by 
the linear relation 

2 

j = o  
u ( P ) =  X M ( E ; p , A u ( . i )  (1.9) 

where the E-dependent M (  ) coefficients satisfy (1.8): 

(1.10) 
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as well as the ‘initialization conditions’: 

M ( € ;  i, j )  = S,,j O<i , j<2 .  (1.11) 

The homogeneous nature of (1.8) suggests that some suitable normalization condi- 
tion must be chosen. One convenient choice is (bearing in mind the non-negativity of 
the ground state) 

2 

u ( i ) = l .  (1.12) 
i - 0  

Eliminating u(0) and inserting into (1.9) we arrive at the final linear expression relating 
the moments to the unconstrained missing moments (u(1) and u(2)): 

u ( p )  = &E; p ,  O ) + f i ( € ;  P, l ) u ( l ) + i f ( E ;  p,  2)u(2) (1.13) 

where 

(1.14) 

Restricting ourselves to the ground state, the normalization prescription in (1.12) 
restricts the missing moments u(1) and 4 2 )  to the unit square in the positive quadrant 
of the u(1) x u @ )  domain. 

The quantization of the ground state energy, E, is achieved by imposing upon (1.13) 
the necessary and sufficient constraints for the Stieltjes moments to correspond to a 
non-negative measure. These constraints are usually expressed in the form of Hankel- 
Hadamard ( H H )  determinental inequalities (Shohat and Tamarkin 1963); however, 
Handy et a /  (1988a. b) reformulated them in terms of an equivalent set of linear 
inequality constraints suitable for application of linear programming theory (Chvatal 
1983). Specifically, in one dimension, the necessary and sufficient conditions for a 
given set of Stieltjes moments, { u ( p ) } ,  to correspond to a non-negative function are 

I 

i.j=0 
C ( i ) u ( s + i + j ) C ( j ) s O  (1.15) 

for 1 2  0, s = 0, 1, and arbitrary C. 

inequality constraints on the missing moments u(1)  and 4 2 ) :  
Inserting (1.13) into (1.15) there follows an uncountably infinite number of linear 

2 

C A ( € ;  C ;  k ) u ( k ) < B ( € ;  C) (1.16) 
k = I  

where 

B ( € ; C ) = - A ( € ;  C;O) (1.170) 

A(€; C ;  k ) = - x ’ x  C ( i ) f i ( € ; s + i + j , k ) C ( j )  (1.17b) 
Lj=0 

for k = 0, 1 ,2 .  
For completeness we take note of the fact that the quadratic form StNcture of 

(1.15) may be transformed into an equivalent nonlinear theory corresponding to the 



1568 

H H  determinental inequalities: 
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Ar,,[u] = det (u(s+i+j ) )>O (1.18) 

for all I 2  0, s = 0 , l .  The implied U matrix (the argument of the determinant functional) 
is of dimension I + 1, corresponding to O-s_ i, j S I .  In addition, most of the data cited 
in the tables refer to the maximum moment order used, P,,,, in the corresponding 
calculation. In terms of I, this means 2 1  + 1 s P,,,,,. 

If there exists a u(1) x u ( 2 )  solution set to (1.16): U. then it must be convex (Chvatal 
1983). The quantization of the ground state energy involves determining the existence 
or non-existence of U, for given E and I. This in turn can be ascertained quickly by 
implementing a linear programming ‘cutting procedure’ within the unit square domain 
in u(1) x u ( 2 )  (Handy et a /  1988a, b). 

Given I and a conveniently partitioned energy interval one then procedes to 
determine the existence of U for each energy value within the partition. If U does 
not exist, then the associated energy is non-physical. If U does exist, then the associated 
energy is physically possible, up to order I. In this manner converging bounds to the 
true ground state energy are obtained. The result of this analysis, as applied to the 
sextic anharmonic problem, are summarized in table 1. 

Table 1. Eigenenergy bounds for the sextic anharmonic OScillator with m = g = 1. 

Max moment 
order, PmS= Eigenenergy bounds 

8 1.41 < E  < 1.47 
10 1.423< E <  1.438 
12 1.4352< E <1.4364 
14 1.4355<E<1.4357 

It is important to stress that if the potential were asymmetric then we would have 
worked with Hamburger moments directly. Analogous constraints to those in (1.15) 
can be formulated in this case (i.e. s = O  only). For multi-dimensional problems an 
analogous formalism also applies (Handy et al 1988a, b). 

Three important factors contribute to the implementability of the EMM: 

( I )  All the physical solutions to the Schrodinger equation have finite power 
moments; whereas the non-physical solutions have infinite power moments. 

(11) A linear moment equation can be generated from the associated configuration 
space physical system (i.e. the Schrodinger equation). 

(111) The desired solution is uniquely associated with an asymptotically bounded 
(i.e. asymptotically zero) and non-negative configuration enabling the imposition of 
moment constraints derived from the theory of the ‘moment problem’ (Shohat and 
Tamarkin 1963). These in turn, through a linear programming based cutting method 
(Handy et a /  1988a, b), generate converging lower and upper bounds to the desired 
eigenenergy. 

Conditions i and i i  are vaiid for many quantum systems. Condition i i i  wouid 
seem specialized and not always realizable; however, this is not the case. Indeed, any 
bounded (i.e. locally finite and asymptotically zero) physical wavefunction configur- 
ation can be transformed into a non-negative and bounded representation. If the 
wavefunction is not locally finite, but the nature and location of its singularity known, 
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analogous transformations exist. In section 2 we show how we can always transform 
a quantum problem into a representation satisfying all three criteria (i.e. 1-111). 

2. The ‘C-shift’ method 

Consider the one-dimensional Schrodinger equation for arbitrary potential, V(x), 

- V ( x ) +  V(X)W(X) = EW(x). (2.1) 

The physical solutions are associated with exponentially bounded configurations 
satisfying 

lim W(x)=O. (2.2) 
x-*m 

The non-physical solutions diverge asymptotically (Agmon 1983). In addition, it is 
well known that while the bosonic ground state wavefunction can be taken to be 
non-negative, all excited states are of non-uniform signature (Bender and Orzag 1978). 
As indicated in  the preceding section, the E M M  theory requires that the associated 
wavefunction configuration be non-negative; therefore it cannot be applied directly to 
the excited states. 

Our objective is to find a suitable representation satisfying the three conditions 
necessary for implementing the EMM theory, as stipulated at the end of section 1 
(hereafter referred to as conditions 1-111). 

The houndedness property of each physical configuration, as expressed by (2.2), 
suggests that there is a smallest non-negative constant, ‘C’ ,  satisfying 

W(x)+ c a0 for all x. (2.3) 

The determination of C will be discussed shortly. 
This non-negative configuration will not have finite power moments. This requires 

the introduction of an additional non-negative regulating functional-factor, R(x) ,  so 
that the composite physical configuration has finite Hamburger moments: 

@(x)=(W(x)+C)R(x)  

dx xp@(x) < cc 
m 

for @ physical 

We will refer to @(x) as a (non)physical configuration if its associated Y ( x )  
representation is (n0n)physical (i.e. bounded (unbounded)). 

In order to satisfy condition I, the regulating function must satisfy ( 2 . 5 )  for physical 
configurations and yield infinite Hamburger power moments for unphysical configura- 
tions. To this extent, approximate knowledge of the asymptotic behaviour of the 
Schrodinger equation solutions are required. For one-dimensional problems, this is 
readily provided by a zeroth-order J W K B  analysis (Bender and Orzag 1978). For this 
case we have: 

W(x)=exp(*[ d x m )  

where + and - are associated with the non-physical and physical configurations, 
respectively. In terms of the above, R(x)  must satisfy the following conditions for all 
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integer p values: 
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m 

dxxPR(x) < 00 ( 2 . 7 a )  L 
m I-* dxx’R(x) exp( -Ir dy Jv(L.)) <CO 

J-- d x x ~ R ( x ) e x p i + j I d y J ) = o s .  ( 2 . 7 ~ )  

It is clear that these conditions are required so that in the @-representation the 
physical solutions are the unique configurations with finite moments. If condition 
( 2 . 7 ~ )  is not satisfied then non-physical Y configurations (those having infinite power 
moments) will transform into @configurations with finite power moments: thereby 
possibly enlarging the set of @ configurations consistent with the moment problem 
constraints. The latter would then prevent the generated bounds from convering to a 
particular eigenenergy; that is, most likely the generated bounds will be slowly converg- 
ing, crude and uninteresting. An example of this is provided in table 3 as will be 
discussed in section 3.1. 

Nevertheless, the preceding remarks are important because, for multi-dimensional 
problems, the approximate determination of the asymptotics for the Schrodinger 
equation solutions can be difficult. As such, one may adopt an empirical attitude and 
‘guess’ at some suitable regulating function. The behaviour of the generated bounds 
would then indicate the appropriateness of the chosen regulating function. We will 
adopt this approach when we discuss the two-dimensional problem in section 3.3. 

Condition I1 can usually be easily satisfied depending on the nature of the potential 
function and chosen R(x). At worst a change of variables (or equivalently, a ‘generalized 
moment formulation’) may be required in order to generate a moment equation 
representation for the Q configuration space problem. 

Assuming (2.7a, b, c )  are satisfied (that is condition 1 is satisfied), as well as 
condition 11, then the identification of a suitable C value satisfying ( 2 . 3 )  will satisfy 
condition 111. Usually, knowledge of a suitable C value is not known a priori. Our 
approach will be to guess at a suitable large C value. If this guess is too large, then 
it will simply mean that the convergence rate of the eigenenergy bounds will be reduced. 
If the guess is too small, then no energy bounds will be observed, at some suitably 
high moment order. These issues will become clearer through the examples presented 
in section 3 .  

In addition to the formalism previously presented, two important points arise which 
are critical to the impiementation of the ‘C-shift’ theory. The first is the impiicit 
assumption that the regulating function, R(x), is not orthogonal to the desired physical 
configuration, Ur(x). Usually, this can be anticipated and an appropriate functional 
form adopted. Most of the preceding discussion is relevant because R(x) will normally 
be chosen of even parity. Odd-parity states can be obtained by an analogous con- 
sideration of the expression (xW(x) + C)R(x). 

 ne second important point is that an appropriate normaiization within the @- 
representation must be adopted. Care must be taken to exclude the trivial zero solution, 
W(x) = 0, from appearing as a non-trivial @(x) = CR(x) solution. We must develop a 
normalization prescription that effectively ‘projects out’ this trivial solution; otherwise 
no converging bounds will be observed. 

(2.76) 

and 
,.m 

I 
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Finally, in the event that the physical wavefunction is locally infinite at a point, 
W ( x , ) =  *a, one can always introduce an additional regulating factor, S ( x ) ,  which 
transforms the physical configuration Y into a bounded configuration (locally finite 
and asymptotically zero) amenable to the C-shift formalism: ( S ( x ) W ( x ) +  C ) R ( x ) .  
The determination of an appropriate S ( x )  consistent with criteria 1-111 is made on the 
basis of the 9 ’ s  singular behaviour at x,, both of which are assumed known. The 
multi-dimensional generalization is immediate. 

3. Examples 

3.1. The harmonic oscillator 

Consider the harmonic oscillator problem 

- Y ( x ) + x ’ Y ( x )  = E Y ( x ) .  

A JWKB analysis results in the asymptotic behaviours exp(+x2/2) for the non-physical 
and physical solutions, respectively. We may take R ( x )  = exp(-ax2), where a > 0 and 
in addition (from (2.7a, b, c ) )  

-a-f<O ( 3 . 2 ~ )  

and 

- a  +;a 0. (3.26) 

Combining these: O < a S $  (a>O from (2.7a)). 
Taking @(x) = ( W + c ) R ( x ) ,  the ensuing @-space equation is 

- [w+40x@’+[x2(~ -4a2)-2a-E]@= c[x ’ -E ]  exp(-ax2). (3.3) 

The symmetric nature of R ( x )  makes the preceding formulation relevant only for 
symmetric solutions. Odd-parity solutions can be obtained by working with (xY + 
C ) R ( x )  instead. For simplicity we limit all discussion to even-parity states only. The 
generalization is immediate. 

As in the introduction, a Stieltjes moment formulation is possible for the symmetric 
states of (3.3): 

[1-4a’Ju(p+ 1 )  

= -[40(2p+ 1)-2a -E]u(p)+2p(2p- l ) u ( p -  1 )  

+ C [ U ( P +  l ) - W p ) l  (3.4) 

where the u-moments are defined by 
m 

u(p)=  j - m d x x 2 p  exp(-ax2) (3.5a) 

and satisfy the recursion relation 

u ( p + l )  = ( 2 ~ +  l ) u ( p ) P a  p a 0  (3 .5b)  

u ( o ) = m .  (3.5c) 

The inhomogeneous linear finite difference equation in (3.4) admits the general solution 

u ( p ) = M ( E , a ; p , O ) u ( O ) + M ( ~ ,  a ; p ,  1)C (3.6) 
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where the M-coefficients satisfy (3.4) and the initialization conditions 

C R Handy and P Lee 

M ( E ,  a ;  0,O) = 1 

M ( E ,  a ;  0, I )  = 0. 

(3.70) 

(3.76) 

A normalization prescription must be adopted that prohibits the trivial Y ( x )  = O  
solution from becoming a non-trivial solution of (3.3). That is, in general, for any E 
value, the bounded and non-negative configuration @(x) = C R ( x ) ,  for any C, will be 
a solution to (3.3). This is unsatisfactory and must be projected out. If we stipulate 
that (recall C 2 0) 

(3.8) 

then we are requiring JdxY(x)exp(-ax2)  be unity (note that u(O)=  

u(0) = 1 + CV(0)  

dx (ul(x) + C )  exp(-ax')) thereby projecting out the trivial solution. 
Inserting (3.8) into (3.6) results in the relation 

u ( p ) = f i ( ~ ,  a ; p ,  o ) + f i ( ~ ,  a ; p ,  1 ) ~  (3.9a) 

where 

&E, a ;  P, 0) = W E ,  a ;  p ,  0) (3.96) 

and 

G ( ~ , a ; p , l ) = ~ ( ~ , a ; p ,  I ) + u ( o ) M ( E , ~ ; ~ , o ) .  (3.9c) 

Comparing (3.9a) with the analogous structure in (1.13), for each E value within 
a partitioned energy interval we may apply linear programming methods to determine 
the existence or non-existence of a C-solution set satisfying the analogue of (1.16) and 
(1.17) as well as O <  C <  C,,,, where C,,, is arbitrarily large. The results are given in 
table 2. Note that if C,,, is sufficiently large, then the true energy is bounded. As C,,, 
increases, the convergence rate of the bounds decreases. If C,,, is chosen too small, 
then at some order no energy bounds are generated; that is no energy value exists 
satisfying the relevant linear inequality constraints (Because @(x) has become negative). 
Thus, empirically, the behaivour of the bounds as C,,, is increased suggests whether 
or not a true physical energy is being obtained. 

It should be noted from (3.4) that choosing a = f  dramatically alters the order of 
the moment-finite difference recursion relation. In fact, one obtains u(0) = Cu(0) (i.e. 
u(1)  = u(0)  when a =f ) .  Comparing with (3.8), it is clear that this case corresponds to 
the regulator being orthogonal to the states of interest; and is therefore inappropriate 
from the C-shift perspective. 

It is interesting to note the behaviour of the ground state energy bounds when the 
regulator parameter, a, exceeds the constraint a Sf. Table 3 gives these results. The 
results are as predicted in section 2. 

3.2. The quartic potenrial 

An analogous formulation to that presented previously is possible for the quartic case 

- W ( x ) + x " ~ ( x ) =  E Y ( x ) .  (3.10) 

Again we limit our discusssion to symmetric states. A simple application of JWKB 

theory tells us that the asymptotic behaviour of the non-physical and physical solutions 
is governed by exp(+lx'l/3). As such, the same regulator R ( x )  = exp(-ax') may be 
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Table 2. C-shift formulation for the harmonic oscillator potential. R ( x )  = exp(-oxi), 
a = a .  Bounds in parentheses refer to higher Cmax value. 

Eigenenergy bounds for 
lowest three even parity states Pms, 

IO 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

0.9< E < 1.1 
4.8< E < 5.5 
8.0<E<9.7 

0.99<E<l.Ol 
4.97 < E  < 5.08 
8.76<E<9.13 

0.998<E<1.001 
4.995<E<5.012 
8.948< E C9.023 

0.9998<€<1.0001 
4.9993< E <5.0018 

8.990<E<9.004 

0.99998< E<1.00001 
4.9999< E C5.0003 
8.9983<E<9.0007 

0.999997<E<1.000001 (0.97<E<1.01) 
4.99998<€<5.00004 (4.8< E<5.5) 
8.9997< E <9.000 I 

0.997< E<1.001 
4.9 < E  < 5.1 
8.6< E C9.2 

0.9996<E<1.0002 
4.99 < E  C5.01 
8.94< E <9.03 

0.999 95 < E < 1.000 02 
4.999 6 < E < 5.000 9 

8.991 < E  C9.004 

0.999 995 < E < 1.000 002 
4.99996<E<5.00012 
8.99882< Ec9.00046 

0.999 999 5 < E  < 1.000 000 2 
4.99999<E <5.00002 
8.99983< E<9.00007 

(7.5< E <m)  

used. Note that no restriction on the a-parameter is required, other than a > 0. The 
corresponding inhomogeneous, linear, Stieltjes moment recursion relation is 

u ( p + 2 )  =4a2u(p+ l ) - [ - E + 8 a p + 2 a ] u ( p ) + 2 p ( 2 p -  l ) u ( p -  1) 

+ c [ u ( p + z ) - ~ ~ ( P ) l  for p 3 0. (3.11) 

Once again, there results the relations (the E and a dependence is implicitly 

u ( p ) = M ( p , O ) u ( O ) + M ( p ,  l ) u ( l ) + ' w P , 2 ) C  (3.12) 

assumed) 
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Table 3. C-shift formulation far harmonic oscillator. R ( x )  = enp(-ox2), where converging 
bounds requireO<oEi. 

Cma. pmmx a Ground-state energy bounds 

I 6 0.40 0.998 9 < E < 1.000 2 , 

1 6 0.45 0.99997<E<1.00001 
I 6 0.51 O<E<1.000000001 
1 6 0.55 O <  E < 1.000000 7 
1 6 0.60 O <  E < 1.00004 

where 

M(0,O) = 1 M(O,l)=O M(O,2)=0 

M(1,O) = 0 M(1,1)=  1 M(1,2) = o  
and 

We may adopt the normalization condition 

u(O)+u(l) = 1 +  C(v(O)+v(l))  (3.13) 

which corresponds to taking j d x ( l + x 2 ) Y ( x ) R ( x )  = 1. 
Inserting (3.13) into (3.12) (i.e. eliminating u(0)) results in 

U(P) = G(P,O)+G(P, l )U(l)+&P,2)C (3.14a) 

where 

G(P,  0) = W P ,  0) 

h a p ,  2) = M(P, 2)+(U(O)+U(l))M(P, 0). 

G(P,  1 )  = M(P, l ) - M ( p ,  0) (3.146) 

The generation of the representation in (3.14) allows us to preceed with the linear 
program,ming 'cutting method', referred to in section 1 ,  to determine the existence or 
non-existence of a u(1)  x C convex solution set to the relevant linear inequality con- 
straints. Now, we require the additional constraints that Os U( 1)  s 1 + C,,,( u ( 0 )  + ~ ( 1 ) )  
as well as 0s C < C,,,. 

The results of the ensuing analysis are presented in table 4. The results are consistent 
with the values reported in the literature (Hioe et a1 1976). 

3.3. A two-dimensional problem 

An important two-dimensional problem which has appeared in the recent literature 
(Killingbeck and Jones 1986, Vrscay and Handy 1989) is that of the perturbed harmonic 
oscillator defined by 

- { J : Y + J ~ Y } + [ X Z + y z + h ( x y ) * ] Y =  E". (3.15) 

An EMM analysis with respect to the ground state was given in the work of Vrscay and 
Handy (1989). It was found therein that an E M M  formulation within the function space 
corresponding to Y ( x ,  y)  exp(-(x2+y2)/2) yielded satisfactory converging bounds. In 
keeping with this analysis we shall take R(x,  y) =exp(-(xZ+yZ)/2). 
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Table 4. C-shift formulation for the quartic potential. R ( x )  =exp(-ox'), n = I .  Bounds 
in parentheses refer to higher C,,, value. 

Eigenenergy bounds for 
Cm*" P,,, ' lowest two even-parity states 

6 

IO 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

32 

0.5< E <3.9 
5 . 8 ~  E t m  

I.O<E< 1.2 
7.3 < E < 7.6 

1.05 < E  < 1.09 
7.44< E < 7.48 

1.056<E< 1.063 
7.447 < E < 7.459 

1.0597 < E < 1.0606 
7.4549 < E < 7.4564 

1.06026<E < 1.060 57 (0.1 < E  <2.7) 
7 .4555cE<7.4562 ( 6 . 6 c E c m )  

1.06034<E < 1.06039 (0.9< E < 1.3) 
7.45565<E<7.45574(7 .0<E<7.9)  

0 . 9 X E c 1 . 2  
7.2< E <1.6 

1.04< E < 1.07 
1.43 < E  < 7.49 

1.057< E < 1.067 
7.451<E<7.469 

1.059 < E < 1.062 
7.454< E <7.458 

1 .0599cEc  1.0606 
7.4548 < E  < 7.4560 

1.06029<E<1.06039 
7.4556<E.<7.45( 8 

We will focus on the first excited state within the symmetry class corresponding to 
even parity with respects to the following three independent transformations: x u  -x, 
y tf -y,  and x tfy. The true ground state is of even parity relative to all three transforma- 
tions. The relevant C-shift configuration is @(x, y )  = ("(a-, y ) +  C ) R ( x ,  y ) .  

As in the one-dimensional case, we may define two-dimensional Stieltjes moments, 
u(p, q )  (generated from the associated two-dimensional Hamburger moments) satisfy- 
ing the recursion relation 

Au(p+ 1, q + l )  
= [2p(2p- I )u(p-  1 ,4)+24(2q - l)U(P, 4 - 1)1  

+ [ ~ - 2 ( 2 ~ + 2 q + i ) i u ( ~ ,  9 )  

+[v(p+ 1 ,  q ) +  L.(P, s + l ) + A u ( p + L  4+1)-Ev(p,  4)IC (3.16) 

where 
V ( P ,  4 )  = d P ) 4 4 ) .  (3.17) 
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Restricting ourselves to the aforementioned symmetry class, we have u(p ,  q )  = 
u ( q , p ) .  The ensuing missing moments correspond to the set {u(n,O)ln%O}. That is, 
once the missing moments corresponding to n s N are specified, all the moments 
satisfying 0 S p, q s N, are determined. However, the missing moment U( N, 0) = u(0, N) 
does not contribute to any other u ( p ,  q )  moment for ( p ,  q )  E [0,  NI x [0, NI.  

It is argued in the work of Handy et a1 (1988a, b), that the necessary and sufficient 
conditions for a given set of two-dimensional Stieltjes moments to correspond to a 
non-negative function-measure are given by linear inequality constraints analogous to 
those in (1.16) (for x - y  symmetric configurations): 

D 

11 C ( h ~ , j J 4 ~ + i ~ t  + i d j  + j d C ( & * , j d  (3.18) 
1,.1*=1 

for s = 0, 1, arbitrary Cs, and arbitrary D (where (i,, jl) = (i, j I l ,  1 S Is D, denotes a 
convenient coordinate pair sequence ordering for all non-negative integer pairs). 

In the work by Vrscay and Handy the coordinate sequence ordering adopted is 
defined as follows. Consider the integer points within the square region [O,  I ]  x [0, I]. 
Starting with (0,O) as the first sequence element, we proceed to enumeratre sequentially 
the coordinate pairs (i, j )  by varying i first and then j: (O ,O) ,  ( 1 ,  O ) ,  (2, O ) ,  (3 ,0 ) ,  . . . , 
( I ,  0), (0, l ) ,  (1, l) ,  (2, I ) ,  . . . , ( I ,  l) ,  . . . , (0, I ) ,  (1, I ) ,  (2, I ) ,  . . . , ( I ,  I)). Let US consider 
the first D sequence elements (i.e. D < ( 1  + I)2). From the perspective of (3.18), the 
coordinates of the moments u(s+ i , ,+ i l , ,  j l 1 + j l 2 )  lie within the square [O,  1+2I]x  
[0, l+2I].  As such, one would take the associated missing moments to be, { u ( n , O ) ,  
for 0 < n s N = 1 + 21}  satisfying the possible normalization prescription: 

N N 
1 u ( n , 0 ) = 1 + C  1 u(n,O). 
"=O "=O 

(3.19) 

From (3.16) there follows the standard expansion (E dependences are implicitly 
assumed) 

N 
u ( P , ~ ) =  M ( p , q ;  n)u (n ,o )+M(p ,q )C  (3.20) 

n=0 

where O s p ,  q s N, O s  n S N,  and 

M ( P ,  0; n )  = 

Mc(p ,O)=O 

for 0 S p, n s N 

for 0 S p < N. 

The M-coefficients satisfy the corresponding two-dimensional recursion relation in 
(3.16). In addition, M ( p , q ;  k ) = M ( q , p ;  k ) .  

The incorrectness of taking (3.19) as our normalization now becomes apparent. 
Clearly, the solution 

u ( N , O ) = l + C  1 o(n,O) and U( n, 0) = 0 for O S  n < N- 1 

is consistent with the normalization; thereby yielding 

["l 1 
u * ( p , q ) = M ( p , q ;  N ) [ ~ + C [ " ~ ~ U ( ~ , O ) ] ] + M , ( ~ , ~ ) C .  

The M ( p ,  q ;  N) coefficient is zero except for ( p ,  q )  = (N, 0) and (0, N )  (provided 
(p, q )  lies within the [0, N ] x [ O ,  NI region). As indicated in section 1, we may work 
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with (3.18) or its nonlinear counterpart defined by the appropriate two-dimenional HH 

determinants (Handy et al 1988a, b). In terms of the latter, it follows that 

(3.2 1 a )  

(3.216) 

Relation (3.21a) follows from noting that, in terms of the sequence ordering adopted 
by Vrscay and Handy, the matrix M(i l l+i ,2 ,  j z l + j 1 2 ;  N), corresponding to the case 
.--n :- L L . + ; ~ ~ I I . ,  ..e-.. r h o +  :" I___ - F + I . -  " ~ - . . ~ - - ~  A-~...~ I / :  i\ I I )  I C  n= 

( 1 + Z ) 2 )  cancombineto form (N,O) or(O,N),  where N = 2 1 + 1  (i.e. ( i , j) l l+(i , j) t2# 
( 2 I +  1,O) or (0,21+ 1 ) ) .  

T'he second relation, (3.216) is slightly more difficult. The matrix M ( l + i l l + i 1 2 ,  
j , , + j I2 ;N)  isnon-zeroonlyfor I1=12=1+1,and11=/2=1(1+1)+1.Thus , forthe  
s = 1 case, U*( 1 + ill + i,,, j l ,  +jJ consists of a positive diagonal matrix, 

det{u*(i,, + i d l l  + j d }  = det{Kh.i,(i,, + it,, j , ,  + j d C } >  0 

det{u*(l+ ill + ilz, j l ,  + j J )  > 0. 

a-", La '""..L'*Y"J IL.". I I I a L  La, LI"LIG "1 L l l r  "cq"c"cc C 1 ~ 1 , l L l l L D  ,,.,,,If ,1- . -Y  ~ 

~ ( 1 +  ill + i,,,j,, +,I2 ;  N I {  1 + C [  io o(n, 011 ] 
added to the positve matrix Mc ( 1  +i l l  + iI2, j , ,  +j12)c. The latter has all its diagonal 
subdeterminants positive. From this follows (3.21 6). 

The preceding argument shows that the normalization in (3.19) is inadequate in 
projecting out t h e  previous trivial unphysical moment solution. To remedy this, we 
must adopt a different coordinate pair sequence ordering. Again we focus on the 
non-negative integer pairs ( i ,  j )  E [0, I ]  x [0, I ] ,  for given I. Again, we take (0,O) as 
our  first entry, and proceed as before in terms of ordering by first varying i then j ;  
however, this time we exclude the points ( I ,  0) and (0, I ) !  This then means that the 
maximum dimension i s  D* = ( I  + 1 ) 2  -2. It then follows that the set of points {(s+ i , ,  + 
i12, +&)} defined by this finite sequence ordering lie within the [O, 21 + I ]  x [0,21+ 1 3  
square region, but exclude the points (21,0), ( 2 / + 1 , 0 ) ,  ( 2 I + l ,  1 )  and the x c t y  
counterparts. However, because the point (2Z+ 1,2) is included, the missing moment 
u(21,O) must be kept. That is, the generation of the moment u(2I+ 1,2)  includes a 
u(21,O) dependence. As such, the corresponding missing moment order forthis coordin- 
ate pair sequencing is N = 21. The corresponding normalization is then: 

2 1  

,,=0 
( 3 . 2 2 )  

Table 5. C-shift formulalion for the perturbed two-dimensional harmonic oscillator 
( A  =0.1). Id denotes the number of  missing moments, 21, and the dimensionality 
d <  D * = ( I +  l ) * - 2 .  

Bounds for the first excited stale of even parity 
C I,, u n d e r x - - x , y u - y ,  and x - v  

0.5x10-2 2, 6.12< EX6.19 
0.5x10-2 2, 6.149< E <6.163 

IO-' 3,o 6.1578< E<6.1620" 

io-+ 3x4 6.1591< E<6.1594 
' , C o L , C , ' I L n n  : t i  Y . I , O " . L  .".I""" 

In-4 
1" 

"The change in C reflects an implicit change in normalization 8s I increaser (refer to 
(3.22)). Spurious narrow feasibility regions were encountered which subsequently dis- 
appeared at higher order. 
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The results of this analysis are given in table 5 .  For this problem we kept C fixed. 
The bounds quoted are consistent with the value given by Killingbeck and Jones (1986) 
of E = 6.159 2858. Note that, contrary to one-dimensional systems with a fixed number 
of missing moments, multi-dimensional problems involve an infinite number of missing 
moments; although at any one time a finite number is required. As I increases, the 
wavefunction normalization implied by (3.22) also changes; accordingly, C must also 
change; that is, for a given excited state, its corresponding minimum C-value is 
I-dependent. This is reflected in the data in table 5 .  

4. Conclusion 

We have presented the C-shift reformulation of the EMM for generating converging 
eigenenergy bounds. All of the numerical results required double precision arithmetic 
on the CRAY. It is our belief that better estimates for the asymptotic behaviour of the 
two-dimensional Schrodinger equation solutions should lead to a more suitable regulat- 
ing function, R ( x ) ,  yielding improved bounds. This investigation is currently underway. 
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